Free Shipping On Retail Orders $60+ / Free Shipping On Wholesale Orders $350+

 

NAC MD


Purchase options
$33.15
$31.49

Purchase options
$33.15
$31.49


Purchase options
$33.15
$31.49

Purchase options
$33.15
$31.49


  • NAC MD has N-Acetylcysteine, Melatonin and Selenium which are all critical for lung support and for the major antioxidant system of the body specifically the 5 member glutathione pathways.*

     

    NAC (N-Acetylcysteine) is a critical component of Glutathione. In fact, oral NAC increases glutathione better than actual oral glutathione, which instead gets broken down in the intestines quickly. NAC is proven to support all antioxidant pathways and respiratory processes.*

     

    This novel formula exclusive to MDP is comprised of the key nutrients critical to optimizing the all-important glutathione stores within the body.*

     

    The tripeptide, γ-l-glutamyl-l-cysteinyl-glycine is known as glutathione.1 Roles:

    • Glutathione (GSH) is heavily involved in hormone metabolism, especially in regulating the pro-inflammatory hormones such as estrogen, leukotrienes and prostaglandins. GSH is an all-important antioxidant and redox regulator, manages immune homeostasis, metabolic detoxification, detoxification of xenobiotic electrophiles.2
    • More specifically, GSH (i) regenerates vitamins C and E, (ii) is a co-factor in 1 out of 7 liver Phase II conjugation reactions, (iii) regulates cellular proliferation and apoptosis, and (iv) protects, facilitates and supports essential mitochondrial functions and structures.3 Its deficiency or abundance is closely associated with healthy longevity.4

     

    GSH is the essential building block to three groups of enzymes, specifically glutathione oxidase, glutathione peroxidase and glutathione reductase.5 Inclusively, there are multiple members found within these three groups, of which the main ones include: glutathione reductase (GR – which recycles/recharges GSHPx), glutathione-S transferase (GST), gamma-glutamyl transferase (GGT), heme oxygenase (HO-1), and the all-important glutathione peroxidase (GSHPx, also abbreviated as GPx).6,7,8

     

    Among all antioxidant enzymes, GPx is considered the most powerful biological antioxidative reductant,9,10 and is one of the major antioxidants of the body.11 Surprisingly, it occurs at very high levels within most cells, around 5 millimolar concentration!12

     

    GPx is found in two major places within the body: (1) The blood stream from GPx secreted by the kidneys, and (2) intracellular GPx which is manufactured within cells. The critical production of intracellular GPx is primarily dependent upon the presence of intracellular melatonin, and secondarily upon the substrate building materials (a) cysteine, cystine or N-acetyl-cysteine plus (b) selenium.

     

    Essential roles of GSH antioxidant enzymes include: cell cycle regulation,13 healthy immune cell oxidant production (e.g., H2O2, O2-, HOCl, HOBr, OH-) and stopping the chain reaction of lipid peroxide (LOOH) generation, and modulating (downregulating) severe systemic immune stress.14,15

     

    Similar to GR, persistent and adequate CoQ10 (>100mg/day) supplementation appears to “recharge” and significantly improve both function and levels of glutathione peroxidase in the body.16,17,18

     

    Besides the five-member glutathione member family of antioxidants, thioredoxin (Trx) is also a pre-eminent antioxidant family enzyme group as well. Key Trx members include glutaredoxins (Grx1-5), protein disulfide isomerases and thioredoxin reductase (TrxR). Main roles for Trx include working side-by-side with GSH, or managing essential iron homeostasis indispensable to mitochondrial energy production.19,20

     

    Glutaredoxins all utilize glutathione as a co-factor to function, similar to the essential role glutathione plays with all Glutathione antioxidant enzymes. Trx and the glutathione-based antioxidant enzymes are strongly related and connected by way of the thioredoxin glutathione reductase (TGR) enzyme.21 As a result, an essential substrate material emerges between the multi-family members of both the Glutathione group as well as the thioredoxin group of antioxidant enzymes, namely NAC.22

     

    N-ACETYLCYSTEIN: By quantity, N-acetylcysteine (NAC) forms the core building block material found within NAC MD. NAC is an essential substrate to glutathione. NAC is an excellent antioxidant. For example, NAC supplementation is an excellent means to raise body stores of both GSH and GPx when adequately supplemented ( 1,000mg/day).23,24,25,26,27 NAC also supports healthy levels of body stores of metals, including iron.28*

     

    Interestingly, NAC promotes powerful antioxidant functions.31,32,33 When paired with melatonin and selenium supplementation, NAC promotes the resuscitation and optimization of essential intracellular GSH, GPx and Trx levels.34,35,36*

     

    MELATONIN: By quantity, the levels of melatonin found within NAC MD are consistent with dietary amount levels suitable for ingestion during daytime hours.37,38* Melatonin is a hormone found in bioactive amounts in many foods, including many edible plants and herbs.39 In humans, its primary site of production is the pineal gland, but all mitochondria and many white blood cells, bone marrow cells, retina and astrocytes are known to produce significant amounts of this vital hormone.40,41,42,43 Melatonin supplementation has proven to be one of the most comprehensive contributors to health known to integrative medicine.44*

     

    Melatonin serves an extremely important role serving as a primary determinant for GPx production.45,46 Some of the other essential roles for melatonin supplementation include promotion of regenerative healing (e.g., DNA repair47 and osteogenesis), optimizes ATP production, supports fertility and healthy levels of hormones.48,49,50*

     

    Melatonin additionally is integral to, and supports healthy cardiovascular and mental functions, bone formation and regeneration, periodontal health, blood sugar and body fat regulation and protect neurological and gastrointestinal tissues.51,52,53,54 For one example related to cardiovascular health, melatonin supplementation has been shown to possess exceptional ability to balance and help maintain healthy blood pressure.55,56 It is wise to supplement with melatonin because its internal production significantly declines with advancing age.57*

     

    Receptor cites on cell membranes are widespread. Both central and peripheral tissues use melatonin, including adrenal glands, heart and arteries, kidneys, liver, lungs, prostate, skin, bone and immune cells such as neutrophils, B-lymphocytes and T-lymphocytes.58,59*

     

    As far as the immune system is concerned, melatonin has crucial pleiotropic influences.60,61 First, melatonin shows significant protective effects against excessive oxidized GSH that may place significant stresses on multiple organs and tissues.62,63,64,65,66,67 Oxidized GSH is also known as glutathione disulfide (GSSH).68,69,70,71*

     

    In addition to protecting ally, melatonin promotes immune strength and homeostasis to healthy cytokine interplay.72*

     

    Furthermore, melatonin serves as a powerful buffer to the complex needs of the immune system during stress.73*

     

    Melatonin also promotes key “inhibition checks and balances” to our metabolism. For example, deficiency of melatonin “disinhibits” immune cell attraction, which may result in overbalanced immune cell aggregation. On a related theme, there is evidence that melatonin supplementation disinhibits suppression of the vital pyruvate dehydrogenase complex (PDC) energy production pathway. PDC is the primary enzyme system which shunts glucose and opens up optimal ATP generation via mitochondrial respiration (TCA and Electron Transport Chain).74 The significance of this should not be underestimated. If energy production during daytime hours is reduced due to inhibition of mitochondrial ATP production, fatigue results. For perspective, melatonin “production” takes place in darkness, in the absence of blue light or invisible light.75,76,77 But melatonin function primarily occurs during daylight hours, enabling optimal ATP production. Without melatonin’s upregulation of PDC, cells trend toward aerobic glycolysis, which only produce 2 molecules of ATP per glucose molecule, as opposed to mitochondrial respiration which produces 36 molecules of ATP per glucose molecule.*

     

    Melatonin is a superior detoxifier to a plethora of xenobiotics.78*

     

    When compared to glutathione, melatonin appears to be the superior free-radical quencher.79 And most importantly, unlike many other antioxidant supplements, melatonin has no difficulty diffusing into cells and organs, even penetrating easily through the blood brain barrier.80*

     

    SELENIUM: The elemental selenium found in NAC MD is bioavailable and is quickly converted by the body into selenium-proteins containing cysteine.81 Selenium has important roles in supporting fertility, promoting healthy aging, support cardiovascular and endocrine health, as well as in aiding immune functions.82 As an overview, selenium is an essential mineral that promotes redox stabilization to cell membranes, including red blood cells and brain cells.83,84,85,86 In this regard, selenium complements and serves as a mimetic to Vitamin C, rosehips, CoQ10, melatonin and NAC actions.87,88,89,90,91,92,93,94,95,96,97,98* 

     

    Recall that NAC is a widely used dietary supplement source of cysteine. Selenium is integral to 25 selenium-proteins containing cysteine. Key examples of such selenium-containing proteins include GPx, TrxR and iodothyronine deiodinase (IDD). Selenium supplementation offers important support to keep arteries supple, and support healthy blood fat and blood sugar levels.99*

     

    When taken as suggested, the selenium amount formulated into NAC MD may be safely combined with its synergistic MDP product Daily Two DR™ (~400mcg/day).100,101*

     

    IN CONCLUSION: The ingredients comprising NAC MD offers superior support to optimize (1) both GSH and Trx enzymatic antioxidant performance and well as (2) help balance system immune stresses, all in a single formula.

     

    MD Prescriptives synergists to NAC MD include: CoQ-CF, Rose C MD™, enteric coated Omega MD, and Daily Two DR.

    1.  Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12. doi:10.1016/j.mam.2008.08.006
    2.  Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients. 2019;11(9):2073. Published 2019 Sep 3. doi:10.3390/nu11092073
    3.  Pizzorno J. Glutathione!. Integr Med (Encinitas). 2014;13(1):8-12.
    4.  Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 2000 Feb; 14(2):312-8.
    5.  Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay.... Front Pharmacol. 2018;9:1162. Published 2018 Oct 16. doi:10.3389/fphar.2018.01162
    6.  Hu L, Zhang Y, Miao W, Cheng T. Reactive Oxygen Species and Nrf2: Functional and Transcriptional Regulators of Hematopoiesis. Oxid Med Cell Longev. 2019;2019:5153268. Published 2019 Nov 18. doi:10.1155/2019/5153268
    7.  de Pádua Lúcio K, Rabelo ACS, Araújo CM, et al. Anti-Inflammatory and Antioxidant Properties of Black Mulberry (Morus nigra L.) in a Model of LPS-Induced Severe systemic inflammation. Oxid Med Cell Longev. 2018;2018:5048031. Published 2018 Nov 7. doi:10.1155/2018/5048031
    8.  Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007; 47():89-116.
    9.  Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay.... Front Pharmacol. 2018;9:1162. Published 2018 Oct 16. doi:10.3389/fphar.2018.01162
    10.  Cross CE, Hasegawa G, Reddy KA, Omaye ST. Enhanced lung toxicity of O2 in selenium-deficient rats. Res Commun Chem Pathol Pharmacol. 1977 Apr; 16(4):695-706.
    11.  Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The Role of Oxidative Stress, Mitochondrial Function, and Autophagy.... J Diabetes Res. 2017; 2017():1673081.
    12.  Pizzorno J. Glutathione!. Integr Med (Encinitas). 2014;13(1):8-12.
    13.  Meister A. Biosynthesis and functions of glutathione, an essential biofactor. J Nutr Sci Vitaminol (Tokyo). 1992; Spec No():1-6.
    14.  Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12. doi:10.1016/j.mam.2008.08.006
    15.  Li J, Kwon Y, Chung KS, et al. Naphthalene-based fluorescent probes for glutathione and their applications in living cells.... Theranostics. 2018;8(5):1411-1420. Published 2018 Feb 3. doi:10.7150/thno.22252
    16.  LimónPacheco, J. , & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidantrelated enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1–2), 137–147. 10.1016/j.mrgentox.2008.09.015 
    17.  Human Trial-300mg/day (see Fig. 3 & Table 2: P< 0.05) è Lee BJ, Tseng YF, Yen CH, Lin PT. Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation.... Nutr J. 2013;12(1):142. Published 2013 Nov 6. doi:10.1186/1475-2891-12-142
    18.  Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr. 2020;8(4):1766-1776. Published 2020 Mar 19. doi:10.1002/fsn3.1492
    19.  Ye ZW, et al. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response. Antioxid Redox Signal. 2017 Feb 20; 26(6):247-261.
    20.  Bisio H, Bonilla M, Manta B, et al. A New Class of Thioredoxin-Related Protein Able to Bind Iron-Sulfur Clusters. Antioxid Redox Signal. 2016;24(4):205-216. doi:10.1089/ars.2015.6377
    21.  Prast-Nielsen S, Huang HH, Williams DL. Thioredoxin glutathione reductase: its role in redox biology.... Biochim Biophys Acta. 2011;1810(12):1262-1271. doi:10.1016/j.bbagen.2011.06.024
    22.  Harris IS, et al. Glutathione and thioredoxin antioxidant pathways.... Cancer Cell. 2015 Feb 9; 27(2):211-22.
    23.  Bachh A, Shah N, Bhargava R, et al. JK-Practitioner 2007;14:12–6.
    24. Sadowska AM, Manuel-Y-Keenoy B, De Backer WA.  Pulm Pharmacol Ther. 2007; 20(1):9-22.
    25.  De Backer J, Vos W, Van Holsbeke C, et al. Int J Chron Obstruct Pulmon Dis. 2013;8:569-579. doi:10.2147/COPD.S49307
    26.  Conus P, Seidman LJ, Fournier M, et al. Schizophr Bull. 2018;44(2):317-327. doi:10.1093/schbul/sbx093
    27.  Pendyala L, Creaven PJ. Cancer Epidemiol Biomarkers Prev. 1995 Apr-May; 4(3):245-51.
    28.  Lu W, et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients. Eur J Haematol. 2013 Sep; 91(3):249-61.
    29.  Szakmany T, Hauser B, Radermacher P. Cochrane Database Syst Rev. 2012; (9):CD006616. 10.1002/14651858.CD006616.pub2
    30.  Chiang CH, Chuang CH, Liu SL, Chian CF, Zhang H, Ryu JH. Injury. 2012;43(8):1257–1263. doi: 10.1016/j.injury.2011.12.026.
    31.  Del Sorbo L, Zhang H. Crit Care. 2004;8(2):93–95. doi:10.1186/cc2450
    32.  Szakmany T, Hauser B, Radermacher P. Cochrane Database Syst Rev. 2012;2012(9):CD006616. doi:10.1002/14651858.CD006616.pub2
    33.  Benrahmoune M, Thérond P, Abedinzadeh Z. The reaction of superoxide radical with N-acetylcysteine. Free Radic Biol Med. 2000 Oct 15; 29(8):775-82.
    34.  Urata Y, et al. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med. 1999 Oct; 27(7-8):838-47.
    35.  Barlow-Walden L.R., Reiter R.J., Abe M., Pablos M.I., Menendez-Pelaez A., Chen L.D., Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem. Int. 1995;26:497–502. doi: 10.1016/0197-0186(94)00154-M.
    36.  Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. Oxid Med Cell Longev. 2017;2017:7478523. doi:10.1155/2017/7478523
    37.  Salehi B, Sharopov F, Fokou PVT, et al. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells. 2019;8(7):681. Published 2019 Jul 5. doi:10.3390/cells8070681
    38.  Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9(4):367. Published 2017 Apr 7. doi:10.3390/nu9040367
    39.  Salehi B, Sharopov F, Fokou PVT, et al. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells. 2019;8(7):681. doi:10.3390/cells8070681
    40.  Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci. 2016;17(12):2124. doi:10.3390/ijms17122124
    41.  Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules. 2018;23(2):509.  doi:10.3390/molecules23020509
    42.  Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci. 2019;20(5):1223. doi:10.3390/ijms20051223
    43.  Mack JM, Schamne MG, Sampaio TB, et al. Oxid Med Cell Longev. 2016;2016:3472032. doi:10.1155/2016/3472032
    44.  Posadzki PP, Bajpai R, Kyaw BM, et al. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med. 2018;16(1):18. Published 2018 Feb 5. doi:10.1186/s12916-017-1000-8
    45.  Urata Y, et al. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med. 1999 Oct; 27(7-8):838-47.
    46.  Barlow-Walden L.R., Reiter R.J., Abe M., Pablos M.I., Menendez-Pelaez A., Chen L.D., Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem. Int. 1995;26:497–502. doi: 10.1016/0197-0186(94)00154-M.
    47.  Slominski AT, Hardeland R, Zmijewski MA, Slominski RM, Reiter RJ, Paus R. Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J Invest Dermatol. 2018;138(3):490-499. doi:10.1016/j.jid.2017.10.025
    48.  Anderson G, Reiter RJ. Rev Med Virol. 2020;30(3):e2109. doi:10.1002/rmv.2109
    49.  Nicolaides NC, Charmandari E, Chrousos GP, Kino T. Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann N Y Acad Sci. 2014 May; 1318():71-80.
    50.  Carlomagno G, Minini M, Tilotta M, Unfer V. From Implantation to Birth: Insight into Molecular Melatonin Functions. Int J Mol Sci. 2018;19(9):2802. Published 2018 Sep 17. doi:10.3390/ijms19092802
    51.  Najeeb S, Khurshid Z, Zohaib S, Zafar MS. Therapeutic potential of melatonin in oral medicine and periodontology. Kaohsiung J Med Sci. 2016 Aug; 32(8):391-6.
    52.  Vriend J, Reiter RJ. Melatonin, bone regulation and the ubiquitin-proteasome connection: A review. Life Sci. 2016 Jan 15; 145():152-60.
    53.  Karolczak K, Watala C. The Mystery behind the Pineal Gland: Melatonin Affects the Metabolism of Cholesterol. Oxid Med Cell Longev. 2019;2019:4531865. Published 2019 Jul 10. doi:10.1155/2019/4531865
    54.  Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9(4):367. doi:10.3390/nu9040367
    55.  Cagnacci A, Cannoletta M, Renzi A, et al. Prolonged melatonin administration decreases nocturnal blood pressure in women. Am J Hypertens. 2005 Dec;18(12 Pt 1):1614-8.
    56.  Scheer FA, et al. Hypertension. 2004 Feb;43(2):192-7.
    57.  Suzen S. Recent developments of melatonin related antioxidant compounds. Comb Chem High Throughput Screen. 2006 Jul;9(6):409-19.
    58.  Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol. 2017;15(3):434-443. doi:10.2174/1570159X14666161228122115
    59.  Maria S, Samsonraj RM, Munmun F, et al. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res. 2018;64(3):10.1111/jpi.12465. doi:10.1111/jpi.12465
    60.  Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14(4):8638-8683. Published 2013 Apr 22. doi:10.3390/ijms14048638
    61.  Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2018;175(16):3239-3250. doi:10.1111/bph.14083
    62.  Hu W, Deng C, Ma Z, et al. Br J Pharmacol. 2017;174(9):754-768. doi:10.1111/bph.13751
    63.  Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR. J Pineal Res. 2014;56:427–438.
    64.  Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P et al. (2001a). Pediatr Res 50: 756–760.
    65.  Escames G, AcunaCastroviejo D, Lopez LC, Tan DX, Maldonado MD, SanchezHidalgo M et al. (2006a). J Pharm Pharmacol 58: 1153–1165.
    66.  Singer M, Deutschman CS, Seymour CW, ShankarHari M, Annane D, Bauer M et al. (2016). The Third International Consensus Definitions for Severe systemic inflammation and Septic Shock (Severe systemic inflammation3). JAMA 315: 801–810.
    67.  Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental severe systemic inflammation. J Clin Invest. 2006;116(4):984-995. doi:10.1172/JCI25790
    68.  Biolo G, Antonione R, De Cicco M. Crit Care Med. 2007;35(9 Suppl):S591-S595. doi:10.1097/01.CCM.0000278913.19123.13
    69.  Villa P, Saccani A, Sica A, Ghezzi P. J Infect Dis (2002) 185:1115–20.10.1086/340042
    70.  Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental severe systemic inflammation. J Clin Invest. 2006;116:984–995.
    71.  Kim JS, et al. J Surg Res. 2016;200:298-307.
    72.  Hu W, Deng C, Ma Z, et al. Br J Pharmacol. 2017;174(9):754-768. doi:10.1111/bph.13751
    73.  Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14(4):8638-8683. doi:10.3390/ijms14048638
    74.  Anderson G, Reiter RJ. Rev Med Virol. 2020;30(3):e2109. doi:10.1002/rmv.2109
    75.  Dumont M., Paquet J. Progressive decrease of melatonin production over consecutive days of simulated night work. Chronobiol. Int. 2014;15:1–8.
    76.  Godley B.F., Shamsi F.A., Liang F.-Q., Jarrett S.G., Davies S., Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 2005;280:21061–21066. doi: 10.1074/jbc.M502194200.
    77.  Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014;15(12):23448-23500. Published 2014 Dec 17. doi:10.3390/ijms151223448
    78.  Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9(4):367. Published 2017 Apr 7. doi:10.3390/nu9040367
    79.  Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci. 2018;19(8):2439. doi:10.3390/ijms19082439
    80.  Suzen S. Recent developments of melatonin related antioxidant compounds. Comb Chem High Throughput Screen. 2006 Jul;9(6):409-19.
    81.  Lescure A, Fagegaltier D, Carbon P, Krol A. Protein factors mediating selenoprotein synthesis. Curr Protein Pept Sci. 2002 Feb; 3(1):143-51.
    82.  Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2006;63(1):52-59. doi:10.1007/s00018-005-5313-y
    83.  Elango N, Samuel S, Chinnakkannu P. Enzymatic and non-enzymatic antioxidant status... Clin Chim Acta. 2006;373:92–98. doi: 10.1016/j.cca.2006.05.021.
    84.  Franco R, Navarro G, Martínez-Pinilla E. Antioxidant Defense Mechanisms in Erythrocytes and in the Central Nervous System. Antioxidants (Basel). 2019;8(2):46. doi:10.3390/antiox8020046
    85.  Kuhn V, et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718742. doi:10.1089/ars.2016.6954
    86.  Pinton S, Brüning CA, Sartori Oliveira CE, Prigol M, Nogueira CW. J Nutr Biochem. 2013 Jan; 24(1):311-7.
    87.  Kuhn V, et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718742. doi:10.1089/ars.2016.6954
    88.  Widén C, Ekholm A, Coleman MD, Renvert S, Rumpunen K. Erythrocyte antioxidant protection of rose hips (Rosa spp.). Oxid Med Cell Longev. 2012;2012:621579. doi:10.1155/2012/621579
    89.  Mármol I, Sánchez-de-Diego C, Jiménez-Moreno N, Ancín-Azpilicueta C, Rodríguez-Yoldi MJ. Therapeutic Applications of Rose Hips from Different Rosa Species. Int J Mol Sci. 2017;18(6):1137. doi:10.3390/ijms18061137
    90.  Di Pierro D, et al. Effects of oral administration of common antioxidant supplements on the energy metabolism of red blood cells.... Mol Cell Biochem. 2020;463(1-2):101113.
    91.  Niklowitz P, Sonnenschein A, Janetzky B, Andler W, Menke T. Enrichment of coenzyme Q10 in plasma and blood cells: defense against oxidative damage. Int J Biol Sci. 2007;3(4):257262. doi:10.7150/ijbs.3.257
    92.  Niklowitz P, et al. Coenzyme Q10 in plasma and erythrocytes: comparison of antioxidant levels in healthy probands after oral supplementation and in patients suffering from sickle cell anemia. Clin Chim Acta. 2002;326(1-2):155161. doi:10.1016/s0009-8981(02)00328-5
    93.  See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157762/
    94.  See: https://www.ncbi.nlm.nih.gov/pubmed/30061474
    95.  See: https://www.ncbi.nlm.nih.gov/pubmed/10496145
    96.  See: https://www.ncbi.nlm.nih.gov/pubmed/29077241
    97.  Kuhn V, et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718742. doi:10.1089/ars.2016.6954
    98.  Millea PJ. Am Fam Physician. 2009 Aug 1; 80(3):265-9. [PubMed] [Ref list]
    99.  Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Oxid Med Cell Longev. 2017;2017:7478523. doi:10.1155/2017/7478523
    100.  Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds . Institute of Medicine, Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. The National Academies Press; Washington, DC, USA: 2000. p. 529.
    101.  Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients. 2018;10(10):1466. Published 2018 Oct 9. doi:10.3390/nu10101466